Facile Synthesis of Novel Fused 1,2,3-Triazolo[1,5-a]pyridines from o-Formyl(azido)azoles

Wim Dehaen^a and Jan Becher^b

^a Department of Chemistry, University of Leuven, Celestiinenlaan 200F, B-3001 Heyerlee, Belgium and ^b Department of Chemistry, Odense University, DK-5230, Odense-M, Denmark

> Dehaen, W. and Becher, J., 1993. Facile Synthesis of Novel Fused 1,2,3-Triazolo-[1,5-a] pyridines from o-Formyl(azido)azoles – Acta Chem. Scand. 47: 323–325.

Dedicated to Professor Salo Gronowitz on the occasion of his 65th birthday.

Heterocycles bearing an azido function have found wide application in organic synthesis.1 Active methylene nitriles 1 are known to condense with o-substituted aryl azides 2 in a two-step process, to yield tricyclic triazolopyrimidines 3.2,3 Carbocyclic2 and heterocyclic3 azides have been used (Scheme 1).

Scheme 1.

It was envisaged that an intramolecular nucleophilic attack by a carbanion in the second step on the formyl moiety would result in a similar condensation to triazolopyridines (Scheme 2). Thus, the readily available 5-azido-4-formylpyrazoles 4a-c were reacted with dimethyl 3-oxopentanedioate 5 and triethylamine. In the first step the (3-pyrazol-3-yl-1,2,3-triazol-4-yl)acetates 6a-c were formed via a Dimroth reaction.5 These unstable intermediates could not be isolated but readily condensed under the reaction conditions to form pyrazolo [4,3-e] [1,2,3]triazolo[1,5-a]pyridines 7a-c in high yields (Scheme 2).

7a - c

Scheme 2.

The azidotriazole 84 condensed similarly, and in this case a 75% yield of the pyridineditriazole 10 was obtained (Scheme 3).

PMB =
$$para$$
-methoxybenzyl

PMB $= para$ -methoxybenzyl

 $= para$ -methoxybenzyl

Scheme 3.

Analogously, the tetracyclic indoles 12a,b could be obtained in fair yields from the corresponding azides 11a,b⁶ (Scheme 4).

CHO

S, Et₃N

R

EIOH,
$$\Delta$$

52 - 80%

11 a - b

(a) R = Ph

(b) R = PMB (p -methoxybenzyl)

Scheme 4.

Fused 1,2,3-triazoles undergo ring-chain tautomerism and are in equilibrium with open-chain diazo imines.⁷ This equilibrium is reported to be shifted entirely to the closed form in the triazolopyridine series⁸ although in this case, the intermediate diazopyridine could be trapped as the perchlorate salt.8a

For the fused systems 7a-c, 10 and 12a,b the open diazo form 13 is present in significant amounts as can be seen from the IR spectra (2110 cm⁻¹). In the mass spectra an abundant $M^{+}-28$ ion is seen, and the strongly broadened NMR spectra indicate a fast equilibrium. The

SHORT COMMUNICATION

effect is more pronounced in the pyrazole series and for *N*-aryl substituted heterocycles (Scheme 5).

Scheme 5.

It has been reported² that hydrolysis and decarboxylation precedes triazole-ring scission. Thus, tricycle **7a** was smoothly converted into the functionalized

pyrazolopyridine 14 with concentrated hydrochloric acid (Scheme 6).

Me COOMe
$$\frac{\text{conc. HCl}}{\text{reflux}}$$
 $\frac{\text{conc. HCl}}{\text{reflux}}$ $\frac{\text{conc. HCl}}{\text{Ph}}$ $\frac{\text{CH}_2\text{Cl}}{\text{CH}_2\text{Cl}}$

Scheme 6.

During this work our attention was drawn to a recent paper, in which similar condensations of *ortho*-functionalized aryl azides with dimethyl 3-oxopentanedioate under the influence of strong bases (NaOEt or Amberlite

Table 1. Spectral data of compounds 7a-c, 10 and 12a,b.

Product	Yield (%)	M.p./°C	Molecular formula ^e	IR(KBr) v/cm ⁻¹ f	1 H NMR (CDCI ₃ , TMS) g δ ($J/$ Hz) h	MS (70 eV) m/z (%)
7a	85	154–155 ⁶	C ₁₈ H ₁₅ N ₅ O ₄ (365.3)	2212 (C=N ₂) 1724 (C=O)	2.75 (s, 3 H, CH ₃), 3.80–3.95 (br, 6 H, CH ₃ O), 7.55–7.85 (m, 5 H, Ph), 8.55 (br s, 1 H, pyridine)	365 (M ⁺ , 4), 337 (M ⁺ - 28, 100), 294 (M ⁺ - N ₂ - CO - Me, 91), 266 (294 - CO, 91), 77 (88)
7b	77	178–180°	C ₁₈ H ₁₄ N ₅ O ₄ (365.3)	2110 (C=N ₂) 1736 (C=O)	3.95 (s, 3 H, CH ₃ O), 4.05 (s, 3 H, CH ₃ O), 4.75 (s, 3 H, CH ₃ N), 7.55 (m, 3 H, Ph), 7.85 (m, 2 H, Ph), 8.45 (s, 1 H, pyridine)	365 (<i>M</i> ⁺ , 16), 337 (<i>M</i> ⁺ - N ₂ , 100), 294 (337 - CO - Me, 80), 266 (294 - CO, 69), 77 (13)
7c	84	164–165°	C ₂₃ H ₁₇ N ₅ O ₄ (427.3)	2214 (C=N ₂) 1719 (C=O)	3.84 (s, 3 H, CH ₃ O), 3.92 (s, 3 H, CH ₃ O), 7.30–7.60 (m, 7 H, Ph), 8.02 (m, 2 H, Ph), 8.30 (m, 1 H, Ph), 8.73 (s, 1 H, pyridine)	427 (M ⁺ , 9), 399 (M ⁺ - N ₂ , 99), 356 (79), 328 (65), 77 (100)
10	75 <i>°</i>	147~148 ⁶	C ₁₈ H ₁₆ N ₆ O ₅ (396.3)	2116 (C=N ₂) 1740 (C=O)	3.80 (s, 3 H, CH ₃ O), 4.05 (s, 6 H, CH ₃ O), 6.25 (s, 2 H, CH ₂ N), 6.80 and 7.55 (m, 2 H, aryl), 8.45 (s, 1 H, pyridine)	396 (M^+ , not detected), 368 ($M^+ - N_2$, 20), 121 ($CH_3OC_7H_7^+$, 100)
12a	80	153–155°	C ₂₂ H ₁₆ N ₄ O ₄ (400.4)	2107 (C=N ₂) 1719 (C=O)	$3.80 \; (br \; s, \; 3 \; H, \; CH_3O), \\ 3.95 \; (br \; s, \; 3 \; H, \; CH_3O), \\ 7.32-7.65 \; (m, \; 8 \; H, \; Ph \; and indole), \; 8.10 \; (m, \; 1 \; H, indole), \; 8.80 \; (br \; s, \; 1 \; H, pyridine)$	400 (M ⁺ , 14), 372 (M ⁺ - N ₂ , 82), 329 (100), 301 (66), 77 (20)
12b	52	153~154°	C ₂₄ H ₂₀ N ₄ O ₅ (444.4)	2105 (C=N ₂) 1724 (C=O)	3.70 (s, 3 H, CH ₃ O), 3.95 (s, 3 H, CH ₃ O), 6.30 (s, 2 H, CH ₂ N), 6.70 and 7.18 (m, 2 H, aryl), 7.15 (m, 3 H, indole), 8.00 (m, 1 H, indole), 8.55 (s, 1 H, pyridine)	444 (<i>M</i> ⁺ , 3), 416 (<i>M</i> ⁺ – N ₂ , 33), 121 (CH ₃ OC ₇ H ₇ ⁺ , 100)

 $^{^{}o}$ The reaction was refluxed overnight. b Recrystallized from chloroform–diethyl ether. c Recrystallized from ethanol. o Recrystallized from methanol. o Satisfactory C, H, N microanalysis was obtained except for **12b**: Found C 64.40; H 4.92; N 11.79. Calc. for C $_{24}$ H $_{20}$ N $_{4}$ O $_{5}$: C 64.86; H 4.54; N 12.61. f Recorded on a Perkin–Elmer 580 infrared spectrometer. g Except **7a** which was recorded in DMSO- f O $_{6}$. f Recorded on a Bruker AC 250 or a Jeol FX-60Q NMR spectrometer. f Recorded on a Varian Mat 311A mass spectrometer.

IRA-400) were described. In the present investigation we used a weaker base (Et_3N) and heterocyclic o-azido aldehydes, conditions which probably led to higher yields. Moreover, the method described above failed when heterocyclic azides were used as substrates.

Experimental

Heterocyclic azides 4a-c, 8 and 11a, b were prepared from the corresponding chlorides, as described previously.^{4,6}

[1,2,3]Triazolo[1,5-a]pyridines 7a-c, 10 and 12a-c: general procedure. A solution of 2 mmol azido aldehyde 4a-c, 8, or 11a, b, 2 mmol 5 and 2 mmol triethylamine in 20 ml ethanol was refluxed for 5 min and the mixture was left to stand overnight. The solid was collected and recrystallized from the appropriate solvent (see Table 1).

6-Chloromethyl-5-methoxycarbonyl-3-methyl-1-phenyl-1Hpyrazolo[3,4-b]pyridine 14. A suspension of 100 mg (0.27 mmol) 7a in 5 ml concentrated HCl was heated with stirring for 2 h. The mixture was added to 50 ml saturated NAHCO₃ solution. Extraction with dichloromethane $(3 \times 20 \text{ ml})$, drying (MgSO₄) and chromatography of the residue over SiO₂ with dichloromethane ($R_f = 0.65$) gave 14 as a white solid, yield 60 mg (67%); m.p. 154-155°C (chloroform-ether). Anal. C₁₆H₁₄ClN₃O₂: C, H, N. MS [E 70 eV; m/z (% rel. int.)] 315 (100, M⁺ 284 $(26, M^+ - CH_3O)$. IR (KBr): 1723 (C=O), 1256 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 2.65$ (s, 3 H, CH₃), 4.00 (s, 3 H, CH₃O), 5.25 (s, 2 H, CH₂Cl), 7.30 (m, 1 H, phenyl), 7.55 (m, 2 H, phenyl), 8.30 (m, 2 H, phenyl), 8.75 (s, 1 H, CH pyridine). 13 C NMR (CDCl₃) $\delta = 12.48$ (CH₃), 46.74 (CH₂Cl), 52.58 (CH₃O), 116.17, 118.55, 120.76, 126.09, 129.08, 134.24, 139.00, 144.00, 150.12, 157.01, 165.98 (C=O).

Acknowledgments. A postdoctoral grant from Odense University to W. D. is gratefully acknowledged.

References

- Gronowitz, S., Westerlund, C. and Hörnfeldt, A. B. Acta Chem. Scand., Ser. B 29 (1975) 224 and 233; ibid. Ser. B 30 (1976) 391; Chem. Scr. 10 (1976) 165; ibid. 12 (1977) 1.
- For leading references see: (a) Sutherland, D. R. and Tennant, G. J. Chem. Soc. C (1971) 706; (b) Sutherland, D. R. and Tennant, G. J. Chem. Soc., Perkin Trans. 1 (1974), 534.
- Westerlund, C. J. Heterocycl. Chem. 17 (1980) 1765; L'abbé,
 G., Godts, F. and Toppet, S. Bull. Soc. Chim. Belg. 94 (1985) 441; ibid. 86 (1986) 679; J. Chem. Soc., Perkin Trans. 1 (1985) 589; L'abbé, G., Godts, F., Toppet, S., Van Meerveldt, L. and King, G. S. D. Bull. Soc. Chim. Belg. 96 (1987) 587.
- Molina, P., Arques, A., Vinader, M. V., Becher, J. and Brøndum, K. J. Org. Chem. 53 (1988) 4654.
- L'abbé, G. and Dehaen, W. Bull. Soc. Chim. Belg. 96 (1987) 823.
- Becher, J., Pluta, K., Krake, N., Brøndum, K. and Christensen, N. J. Synthesis (1989) 530.
- 7. See for instance: (a) Sutherland, D. R. and Tennant, G. J. Chem. Soc., Chem. Commun. (1969) 1070; Tennant, G. and Vevers, R. J. S. ibid. (1974) 671; (b) L'abbé, G., Luyten, I., Frederix, A. and Gelinne, M. Bull. Soc. Chim. Belg. 99 (1990) 389; see also Ref. 2.
- (a) Regitz, M. Chem. Ber. 99 (1966) 2918; (b) Tamura, Y., Kim, J.-H., Miki, Y., Hajashi, H. and Ikeda, M. J. Heterocycl. Chem. 12 (1975) 481; (c) Maury, G., Paugam, J.-P. and Paugam, R. ibid. 15 (1978) 1041; (d) Jones, G., Sliskovic, D. R., Forster, B., Rogers, J., Smith, A. K., Wong, M. Y. and Yarham, A. C. J. Chem. Soc., Perkin Trans. 1 (1981) 78.
- 9. Smalley, R. K. and Teguiche, M. Synthesis (1990) 654.

Received January 15, 1992.